Actual source code: ex15.c
1: static char help[] = "Mixed element discretization of the Poisson equation.\n\n\n";
3: #include <petscdmplex.h>
4: #include <petscdmswarm.h>
5: #include <petscds.h>
6: #include <petscsnes.h>
7: #include <petscconvest.h>
8: #include <petscbag.h>
10: /*
11: The Poisson equation
13: -\Delta\phi = f
15: can be rewritten in first order form
17: q - \nabla\phi &= 0
18: -\nabla \cdot q &= f
19: */
21: typedef enum {
22: SIGMA,
23: NUM_CONSTANTS
24: } ConstantType;
25: typedef struct {
26: PetscReal sigma; /* Nondimensional charge per length in x */
27: } Parameter;
29: typedef enum {
30: SOL_CONST,
31: SOL_LINEAR,
32: SOL_QUADRATIC,
33: SOL_TRIG,
34: SOL_TRIGX,
35: SOL_PARTICLES,
36: NUM_SOL_TYPES
37: } SolType;
38: static const char *solTypes[] = {"const", "linear", "quadratic", "trig", "trigx", "particles"};
40: typedef struct {
41: SolType solType; /* MMS solution type */
42: PetscBag bag; /* Problem parameters */
43: PetscBool particleRHS;
44: PetscInt Np;
45: } AppCtx;
47: /* SOLUTION CONST: \phi = 1, q = 0, f = 0 */
48: static PetscErrorCode const_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
49: {
50: *u = 1.0;
51: return PETSC_SUCCESS;
52: }
54: static PetscErrorCode const_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
55: {
56: for (PetscInt d = 0; d < dim; ++d) u[d] = 0.0;
57: return PETSC_SUCCESS;
58: }
60: /* SOLUTION LINEAR: \phi = 2y, q = <0, 2>, f = 0 */
61: static PetscErrorCode linear_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
62: {
63: u[0] = 2. * x[1];
64: return PETSC_SUCCESS;
65: }
67: static PetscErrorCode linear_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
68: {
69: u[0] = 0.;
70: u[1] = 2.;
71: return PETSC_SUCCESS;
72: }
74: /* SOLUTION QUADRATIC: \phi = x (2\pi - x) + (1 + y) (1 - y), q = <2\pi - 2 x, - 2 y> = <2\pi, 0> - 2 x, f = -4 */
75: static PetscErrorCode quadratic_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
76: {
77: u[0] = x[0] * (6.283185307179586 - x[0]) + (1. + x[1]) * (1. - x[1]);
78: return PETSC_SUCCESS;
79: }
81: static PetscErrorCode quadratic_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
82: {
83: u[0] = 6.283185307179586 - 2. * x[0];
84: u[1] = -2. * x[1];
85: return PETSC_SUCCESS;
86: }
88: static PetscErrorCode quadratic_q_bc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
89: {
90: u[0] = x[1] > 0. ? -2. * x[1] : 2. * x[1];
91: return PETSC_SUCCESS;
92: }
94: static void f0_quadratic_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
95: {
96: for (PetscInt d = 0; d < dim; ++d) f0[0] -= -2.0;
97: }
99: /* SOLUTION TRIG: \phi = sin(x) + (1/3 - y^2), q = <cos(x), -2 y>, f = sin(x) + 2 */
100: static PetscErrorCode trig_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
101: {
102: u[0] = PetscSinReal(x[0]) + (1. / 3. - x[1] * x[1]);
103: return PETSC_SUCCESS;
104: }
106: static PetscErrorCode trig_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
107: {
108: u[0] = PetscCosReal(x[0]);
109: u[1] = -2. * x[1];
110: return PETSC_SUCCESS;
111: }
113: static PetscErrorCode trig_q_bc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
114: {
115: u[0] = x[1] > 0. ? -2. * x[1] : 2. * x[1];
116: return PETSC_SUCCESS;
117: }
119: static void f0_trig_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
120: {
121: f0[0] += PetscSinReal(x[0]) + 2.;
122: }
124: /* SOLUTION TRIGX: \phi = sin(x), q = <cos(x), 0>, f = sin(x) */
125: static PetscErrorCode trigx_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
126: {
127: u[0] = PetscSinReal(x[0]);
128: return PETSC_SUCCESS;
129: }
131: static PetscErrorCode trigx_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
132: {
133: u[0] = PetscCosReal(x[0]);
134: u[1] = 0.;
135: return PETSC_SUCCESS;
136: }
138: static PetscErrorCode trigx_q_bc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
139: {
140: u[0] = x[1] > 0. ? -2. * x[1] : 2. * x[1];
141: return PETSC_SUCCESS;
142: }
144: static void f0_trigx_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
145: {
146: f0[0] += PetscSinReal(x[0]);
147: }
149: static void f0_q(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
150: {
151: for (PetscInt d = 0; d < dim; ++d) f0[d] += u[uOff[0] + d];
152: }
154: static void f1_q(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
155: {
156: for (PetscInt d = 0; d < dim; ++d) f1[d * dim + d] = u[uOff[1]];
157: }
159: static void f0_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
160: {
161: for (PetscInt d = 0; d < dim; ++d) f0[0] += u_x[uOff_x[0] + d * dim + d];
162: }
164: static void f0_phi_backgroundCharge(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
165: {
166: f0[0] += constants[SIGMA];
167: for (PetscInt d = 0; d < dim; ++d) f0[0] += u_x[uOff_x[0] + d * dim + d];
168: }
170: static void g0_qq(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
171: {
172: for (PetscInt d = 0; d < dim; ++d) g0[d * dim + d] = 1.0;
173: }
175: static void g2_qphi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[])
176: {
177: for (PetscInt d = 0; d < dim; ++d) g2[d * dim + d] = 1.0;
178: }
180: static void g1_phiq(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
181: {
182: for (PetscInt d = 0; d < dim; ++d) g1[d * dim + d] = 1.0;
183: }
185: /* SOLUTION PARTICLES: \phi = sigma, q = <cos(x), 0>, f = sin(x) */
186: static PetscErrorCode particles_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
187: {
188: u[0] = 0.0795775;
189: return PETSC_SUCCESS;
190: }
192: static PetscErrorCode particles_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
193: {
194: u[0] = 0.;
195: u[1] = 0.;
196: return PETSC_SUCCESS;
197: }
199: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
200: {
201: PetscInt sol;
203: PetscFunctionBeginUser;
204: options->solType = SOL_CONST;
205: options->particleRHS = PETSC_FALSE;
206: options->Np = 100;
208: PetscOptionsBegin(comm, "", "Mixed Poisson Options", "DMPLEX");
209: PetscCall(PetscOptionsBool("-particleRHS", "Flag to user particle RHS and background charge", "ex9.c", options->particleRHS, &options->particleRHS, NULL));
210: sol = options->solType;
211: PetscCall(PetscOptionsEList("-sol_type", "The MMS solution type", "ex12.c", solTypes, NUM_SOL_TYPES, solTypes[sol], &sol, NULL));
212: options->solType = (SolType)sol;
213: PetscOptionsEnd();
214: PetscFunctionReturn(PETSC_SUCCESS);
215: }
217: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
218: {
219: PetscFunctionBeginUser;
220: PetscCall(DMCreate(comm, dm));
221: PetscCall(DMSetType(*dm, DMPLEX));
222: PetscCall(DMSetFromOptions(*dm));
223: PetscCall(DMSetApplicationContext(*dm, user));
224: PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
225: PetscFunctionReturn(PETSC_SUCCESS);
226: }
228: static PetscErrorCode SetupPrimalProblem(DM dm, AppCtx *user)
229: {
230: PetscDS ds;
231: PetscWeakForm wf;
232: DMLabel label;
233: const PetscInt id = 1;
235: PetscFunctionBeginUser;
236: PetscCall(DMGetDS(dm, &ds));
237: PetscCall(PetscDSGetWeakForm(ds, &wf));
238: PetscCall(DMGetLabel(dm, "marker", &label));
239: PetscCall(PetscDSSetResidual(ds, 0, f0_q, f1_q));
240: if (user->particleRHS) {
241: PetscCall(PetscDSSetResidual(ds, 1, f0_phi_backgroundCharge, NULL));
242: } else {
243: PetscCall(PetscDSSetResidual(ds, 1, f0_phi, NULL));
244: }
245: PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_qq, NULL, NULL, NULL));
246: PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_qphi, NULL));
247: PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_phiq, NULL, NULL));
248: switch (user->solType) {
249: case SOL_CONST:
250: PetscCall(PetscDSSetExactSolution(ds, 0, const_q, user));
251: PetscCall(PetscDSSetExactSolution(ds, 1, const_phi, user));
252: break;
253: case SOL_LINEAR:
254: PetscCall(PetscDSSetExactSolution(ds, 0, linear_q, user));
255: PetscCall(PetscDSSetExactSolution(ds, 1, linear_phi, user));
256: break;
257: case SOL_QUADRATIC:
258: PetscCall(PetscWeakFormAddResidual(wf, NULL, 0, 1, 0, f0_quadratic_phi, NULL));
259: PetscCall(PetscDSSetExactSolution(ds, 0, quadratic_q, user));
260: PetscCall(PetscDSSetExactSolution(ds, 1, quadratic_phi, user));
261: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))quadratic_q_bc, NULL, user, NULL));
262: break;
263: case SOL_TRIG:
264: PetscCall(PetscWeakFormAddResidual(wf, NULL, 0, 1, 0, f0_trig_phi, NULL));
265: PetscCall(PetscDSSetExactSolution(ds, 0, trig_q, user));
266: PetscCall(PetscDSSetExactSolution(ds, 1, trig_phi, user));
267: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))trig_q_bc, NULL, user, NULL));
268: break;
269: case SOL_TRIGX:
270: PetscCall(PetscWeakFormAddResidual(wf, NULL, 0, 1, 0, f0_trigx_phi, NULL));
271: PetscCall(PetscDSSetExactSolution(ds, 0, trigx_q, user));
272: PetscCall(PetscDSSetExactSolution(ds, 1, trigx_phi, user));
273: PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))trigx_q_bc, NULL, user, NULL));
274: break;
275: case SOL_PARTICLES:
276: PetscCall(PetscDSSetExactSolution(ds, 0, particles_q, user));
277: PetscCall(PetscDSSetExactSolution(ds, 1, particles_phi, user));
278: break;
279: default:
280: SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid solution type: %d", user->solType);
281: }
282: PetscFunctionReturn(PETSC_SUCCESS);
283: }
285: static PetscErrorCode SetupDiscretization(DM dm, PetscInt Nf, const char *names[], PetscErrorCode (*setup)(DM, AppCtx *), AppCtx *user)
286: {
287: DM cdm = dm;
288: PetscFE fe;
289: DMPolytopeType ct;
290: PetscInt dim, cStart;
291: char prefix[PETSC_MAX_PATH_LEN];
293: PetscFunctionBeginUser;
294: PetscCall(DMGetDimension(dm, &dim));
295: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
296: PetscCall(DMPlexGetCellType(dm, cStart, &ct));
297: for (PetscInt f = 0; f < Nf; ++f) {
298: PetscCall(PetscSNPrintf(prefix, PETSC_MAX_PATH_LEN, "%s_", names[f]));
299: PetscCall(PetscFECreateByCell(PETSC_COMM_SELF, dim, 1, ct, prefix, -1, &fe));
300: PetscCall(PetscObjectSetName((PetscObject)fe, names[f]));
301: if (f > 0) {
302: PetscFE fe0;
304: PetscCall(DMGetField(dm, 0, NULL, (PetscObject *)&fe0));
305: PetscCall(PetscFECopyQuadrature(fe0, fe));
306: }
307: PetscCall(DMSetField(dm, f, NULL, (PetscObject)fe));
308: PetscCall(PetscFEDestroy(&fe));
309: }
310: PetscCall(DMCreateDS(dm));
311: PetscCall((*setup)(dm, user));
312: while (cdm) {
313: PetscCall(DMCopyDisc(dm, cdm));
314: PetscCall(DMGetCoarseDM(cdm, &cdm));
315: }
316: PetscFunctionReturn(PETSC_SUCCESS);
317: }
319: static PetscErrorCode InitializeWeights(DM sw, AppCtx *user)
320: {
321: PetscScalar *weight;
322: PetscInt Np;
323: PetscReal weightsum = 0.0;
325: PetscFunctionBegin;
326: PetscCall(DMSwarmGetLocalSize(sw, &Np));
327: PetscCall(DMSwarmGetField(sw, "w_q", NULL, NULL, (void **)&weight));
328: PetscCall(DMSwarmSortGetAccess(sw));
329: for (PetscInt p = 0; p < Np; ++p) {
330: weight[p] = 1.0 / Np;
331: weightsum += PetscRealPart(weight[p]);
332: }
333: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Np = %" PetscInt_FMT "\n", Np));
334: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "weightsum = %1.10f\n", (double)weightsum));
335: PetscCall(DMSwarmSortRestoreAccess(sw));
336: PetscCall(DMSwarmRestoreField(sw, "w_q", NULL, NULL, (void **)&weight));
337: PetscFunctionReturn(PETSC_SUCCESS);
338: }
340: static PetscErrorCode CreateSwarm(DM dm, AppCtx *user, DM *sw)
341: {
342: PetscInt dim;
344: PetscFunctionBeginUser;
345: PetscCall(DMGetDimension(dm, &dim));
346: PetscCall(DMCreate(PetscObjectComm((PetscObject)dm), sw));
347: PetscCall(DMSetType(*sw, DMSWARM));
348: PetscCall(DMSetDimension(*sw, dim));
349: PetscCall(DMSwarmSetType(*sw, DMSWARM_PIC));
350: PetscCall(DMSwarmSetCellDM(*sw, dm));
351: PetscCall(DMSwarmRegisterPetscDatatypeField(*sw, "w_q", 1, PETSC_SCALAR));
352: PetscCall(DMSwarmRegisterPetscDatatypeField(*sw, "species", 1, PETSC_INT));
353: PetscCall(DMSwarmFinalizeFieldRegister(*sw));
354: PetscCall(DMSwarmComputeLocalSizeFromOptions(*sw));
355: PetscCall(DMSwarmInitializeCoordinates(*sw));
356: PetscCall(InitializeWeights(*sw, user));
357: PetscCall(DMSetFromOptions(*sw));
358: PetscCall(DMSetApplicationContext(*sw, user));
359: PetscCall(PetscObjectSetName((PetscObject)*sw, "Particles"));
360: PetscCall(DMViewFromOptions(*sw, NULL, "-sw_view"));
361: PetscFunctionReturn(PETSC_SUCCESS);
362: }
364: static PetscErrorCode SetupParameters(MPI_Comm comm, AppCtx *ctx)
365: {
366: PetscBag bag;
367: Parameter *p;
369: PetscFunctionBeginUser;
370: /* setup PETSc parameter bag */
371: PetscCall(PetscBagGetData(ctx->bag, (void **)&p));
372: PetscCall(PetscBagSetName(ctx->bag, "par", "Parameters"));
373: bag = ctx->bag;
374: PetscCall(PetscBagRegisterScalar(bag, &p->sigma, 1.0, "sigma", "Charge per unit area, C/m^3"));
375: PetscCall(PetscBagSetFromOptions(bag));
376: {
377: PetscViewer viewer;
378: PetscViewerFormat format;
379: PetscBool flg;
381: PetscCall(PetscOptionsCreateViewer(comm, NULL, NULL, "-param_view", &viewer, &format, &flg));
382: if (flg) {
383: PetscCall(PetscViewerPushFormat(viewer, format));
384: PetscCall(PetscBagView(bag, viewer));
385: PetscCall(PetscViewerFlush(viewer));
386: PetscCall(PetscViewerPopFormat(viewer));
387: PetscCall(PetscViewerDestroy(&viewer));
388: }
389: }
390: PetscFunctionReturn(PETSC_SUCCESS);
391: }
393: static PetscErrorCode InitializeConstants(DM sw, AppCtx *user)
394: {
395: DM dm;
396: PetscReal *weight, totalCharge, totalWeight = 0., gmin[3], gmax[3];
397: PetscInt Np, p, dim;
399: PetscFunctionBegin;
400: PetscCall(DMSwarmGetCellDM(sw, &dm));
401: PetscCall(DMGetDimension(sw, &dim));
402: PetscCall(DMSwarmGetLocalSize(sw, &Np));
403: PetscCall(DMGetBoundingBox(dm, gmin, gmax));
404: PetscCall(DMSwarmGetField(sw, "w_q", NULL, NULL, (void **)&weight));
405: for (p = 0; p < Np; ++p) totalWeight += weight[p];
406: totalCharge = -1.0 * totalWeight;
407: PetscCall(DMSwarmRestoreField(sw, "w_q", NULL, NULL, (void **)&weight));
408: {
409: Parameter *param;
410: PetscReal Area;
412: PetscCall(PetscBagGetData(user->bag, (void **)¶m));
413: switch (dim) {
414: case 1:
415: Area = (gmax[0] - gmin[0]);
416: break;
417: case 2:
418: Area = (gmax[0] - gmin[0]) * (gmax[1] - gmin[1]);
419: break;
420: case 3:
421: Area = (gmax[0] - gmin[0]) * (gmax[1] - gmin[1]) * (gmax[2] - gmin[2]);
422: break;
423: default:
424: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Dimension %" PetscInt_FMT " not supported", dim);
425: }
426: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "dim = %" PetscInt_FMT "\ttotalWeight = %f\ttotalCharge = %f, Total Area = %f\n", dim, (double)totalWeight, (double)totalCharge, (double)Area));
427: param->sigma = PetscAbsReal(totalCharge / (Area));
429: PetscCall(PetscPrintf(PETSC_COMM_SELF, "sigma: %g\n", (double)param->sigma));
430: }
431: /* Setup Constants */
432: {
433: PetscDS ds;
434: Parameter *param;
435: PetscCall(PetscBagGetData(user->bag, (void **)¶m));
436: PetscScalar constants[NUM_CONSTANTS];
437: constants[SIGMA] = param->sigma;
438: PetscCall(DMGetDS(dm, &ds));
439: PetscCall(PetscDSSetConstants(ds, NUM_CONSTANTS, constants));
440: }
441: PetscFunctionReturn(PETSC_SUCCESS);
442: }
444: int main(int argc, char **argv)
445: {
446: DM dm, sw;
447: SNES snes;
448: Vec u;
449: AppCtx user;
450: const char *names[] = {"q", "phi"};
452: PetscFunctionBeginUser;
453: PetscCall(PetscInitialize(&argc, &argv, NULL, help));
454: PetscCall(ProcessOptions(PETSC_COMM_WORLD, &user));
455: PetscCall(CreateMesh(PETSC_COMM_WORLD, &user, &dm));
456: PetscCall(SNESCreate(PETSC_COMM_WORLD, &snes));
457: PetscCall(SNESSetDM(snes, dm));
458: PetscCall(SetupDiscretization(dm, 2, names, SetupPrimalProblem, &user));
459: if (user.particleRHS) {
460: PetscCall(PetscBagCreate(PETSC_COMM_SELF, sizeof(Parameter), &user.bag));
461: PetscCall(CreateSwarm(dm, &user, &sw));
462: PetscCall(SetupParameters(PETSC_COMM_WORLD, &user));
463: PetscCall(InitializeConstants(sw, &user));
464: }
465: PetscCall(DMCreateGlobalVector(dm, &u));
466: PetscCall(PetscObjectSetName((PetscObject)u, "solution"));
467: PetscCall(SNESSetFromOptions(snes));
468: PetscCall(DMPlexSetSNESLocalFEM(dm, PETSC_FALSE, &user));
469: PetscCall(DMSNESCheckFromOptions(snes, u));
470: if (user.particleRHS) {
471: DM potential_dm;
472: IS potential_IS;
473: Mat M_p;
474: Vec rho, f, temp_rho;
475: PetscInt fields = 1;
477: PetscCall(DMGetGlobalVector(dm, &rho));
478: PetscCall(PetscObjectSetName((PetscObject)rho, "rho"));
479: PetscCall(DMCreateSubDM(dm, 1, &fields, &potential_IS, &potential_dm));
480: PetscCall(DMCreateMassMatrix(sw, potential_dm, &M_p));
481: PetscCall(MatViewFromOptions(M_p, NULL, "-mp_view"));
482: PetscCall(DMGetGlobalVector(potential_dm, &temp_rho));
483: PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &f));
484: PetscCall(PetscObjectSetName((PetscObject)f, "particle weight"));
485: PetscCall(VecViewFromOptions(f, NULL, "-weights_view"));
486: PetscCall(MatMultTranspose(M_p, f, temp_rho));
487: PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &f));
488: PetscCall(MatDestroy(&M_p));
489: PetscCall(PetscObjectSetName((PetscObject)rho, "rho"));
490: PetscCall(VecViewFromOptions(rho, NULL, "-poisson_rho_view"));
491: PetscCall(VecISCopy(rho, potential_IS, SCATTER_FORWARD, temp_rho));
492: PetscCall(VecViewFromOptions(temp_rho, NULL, "-rho_view"));
493: PetscCall(DMRestoreGlobalVector(potential_dm, &temp_rho));
494: PetscCall(DMDestroy(&potential_dm));
495: PetscCall(ISDestroy(&potential_IS));
497: PetscCall(SNESSolve(snes, rho, u));
498: PetscCall(DMRestoreGlobalVector(dm, &rho));
499: } else {
500: PetscCall(SNESSolve(snes, NULL, u));
501: }
502: PetscCall(VecDestroy(&u));
503: PetscCall(SNESDestroy(&snes));
504: PetscCall(DMDestroy(&dm));
505: if (user.particleRHS) {
506: PetscCall(DMDestroy(&sw));
507: PetscCall(PetscBagDestroy(&user.bag));
508: }
509: PetscCall(PetscFinalize());
510: return PETSC_SUCCESS;
511: }
513: /*TEST
515: # RT1-P0 on quads
516: testset:
517: args: -dm_plex_simplex 0 -dm_plex_box_bd periodic,none -dm_plex_box_faces 3,1 \
518: -dm_plex_box_lower 0,-1 -dm_plex_box_upper 6.283185307179586,1\
519: -phi_petscspace_degree 0 \
520: -phi_petscdualspace_lagrange_use_moments \
521: -phi_petscdualspace_lagrange_moment_order 2 \
522: -q_petscfe_default_quadrature_order 1 \
523: -q_petscspace_type sum \
524: -q_petscspace_variables 2 \
525: -q_petscspace_components 2 \
526: -q_petscspace_sum_spaces 2 \
527: -q_petscspace_sum_concatenate true \
528: -q_sumcomp_0_petscspace_variables 2 \
529: -q_sumcomp_0_petscspace_type tensor \
530: -q_sumcomp_0_petscspace_tensor_spaces 2 \
531: -q_sumcomp_0_petscspace_tensor_uniform false \
532: -q_sumcomp_0_tensorcomp_0_petscspace_degree 1 \
533: -q_sumcomp_0_tensorcomp_1_petscspace_degree 0 \
534: -q_sumcomp_1_petscspace_variables 2 \
535: -q_sumcomp_1_petscspace_type tensor \
536: -q_sumcomp_1_petscspace_tensor_spaces 2 \
537: -q_sumcomp_1_petscspace_tensor_uniform false \
538: -q_sumcomp_1_tensorcomp_0_petscspace_degree 0 \
539: -q_sumcomp_1_tensorcomp_1_petscspace_degree 1 \
540: -q_petscdualspace_form_degree -1 \
541: -q_petscdualspace_order 1 \
542: -q_petscdualspace_lagrange_trimmed true \
543: -ksp_error_if_not_converged \
544: -pc_type fieldsplit -pc_fieldsplit_type schur \
545: -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition full
547: # The Jacobian test is meaningless here
548: test:
549: suffix: quad_hdiv_0
550: args: -dmsnes_check
551: filter: sed -e "s/Taylor approximation converging at order.*''//"
553: # The Jacobian test is meaningless here
554: test:
555: suffix: quad_hdiv_1
556: args: -sol_type linear -dmsnes_check
557: filter: sed -e "s/Taylor approximation converging at order.*''//"
559: test:
560: suffix: quad_hdiv_2
561: args: -sol_type quadratic -dmsnes_check \
562: -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd
564: test:
565: suffix: quad_hdiv_3
566: args: -sol_type trig \
567: -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd
569: test:
570: suffix: quad_hdiv_4
571: requires: !single
572: args: -sol_type trigx \
573: -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd
575: test:
576: suffix: particle_hdiv_5
577: requires: !complex double
578: args: -dm_swarm_num_particles 100 -dm_swarm_coordinate_density constant \
579: -particleRHS -sol_type particles \
580: -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd
582: TEST*/