Actual source code: ex15.c

  1: static char help[] = "Mixed element discretization of the Poisson equation.\n\n\n";

  3: #include <petscdmplex.h>
  4: #include <petscdmswarm.h>
  5: #include <petscds.h>
  6: #include <petscsnes.h>
  7: #include <petscconvest.h>
  8: #include <petscbag.h>

 10: /*
 11: The Poisson equation

 13:   -\Delta\phi = f

 15: can be rewritten in first order form

 17:   q - \nabla\phi  &= 0
 18:   -\nabla \cdot q &= f
 19: */

 21: typedef enum {
 22:   SIGMA,
 23:   NUM_CONSTANTS
 24: } ConstantType;
 25: typedef struct {
 26:   PetscReal sigma; /* Nondimensional charge per length in x */
 27: } Parameter;

 29: typedef enum {
 30:   SOL_CONST,
 31:   SOL_LINEAR,
 32:   SOL_QUADRATIC,
 33:   SOL_TRIG,
 34:   SOL_TRIGX,
 35:   SOL_PARTICLES,
 36:   NUM_SOL_TYPES
 37: } SolType;
 38: static const char *solTypes[] = {"const", "linear", "quadratic", "trig", "trigx", "particles"};

 40: typedef struct {
 41:   SolType   solType; /* MMS solution type */
 42:   PetscBag  bag;     /* Problem parameters */
 43:   PetscBool particleRHS;
 44:   PetscInt  Np;
 45: } AppCtx;

 47: /* SOLUTION CONST: \phi = 1, q = 0, f = 0 */
 48: static PetscErrorCode const_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 49: {
 50:   *u = 1.0;
 51:   return PETSC_SUCCESS;
 52: }

 54: static PetscErrorCode const_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 55: {
 56:   for (PetscInt d = 0; d < dim; ++d) u[d] = 0.0;
 57:   return PETSC_SUCCESS;
 58: }

 60: /* SOLUTION LINEAR: \phi = 2y, q = <0, 2>, f = 0 */
 61: static PetscErrorCode linear_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 62: {
 63:   u[0] = 2. * x[1];
 64:   return PETSC_SUCCESS;
 65: }

 67: static PetscErrorCode linear_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 68: {
 69:   u[0] = 0.;
 70:   u[1] = 2.;
 71:   return PETSC_SUCCESS;
 72: }

 74: /* SOLUTION QUADRATIC: \phi = x (2\pi - x) + (1 + y) (1 - y), q = <2\pi - 2 x, - 2 y> = <2\pi, 0> - 2 x, f = -4 */
 75: static PetscErrorCode quadratic_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 76: {
 77:   u[0] = x[0] * (6.283185307179586 - x[0]) + (1. + x[1]) * (1. - x[1]);
 78:   return PETSC_SUCCESS;
 79: }

 81: static PetscErrorCode quadratic_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 82: {
 83:   u[0] = 6.283185307179586 - 2. * x[0];
 84:   u[1] = -2. * x[1];
 85:   return PETSC_SUCCESS;
 86: }

 88: static PetscErrorCode quadratic_q_bc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 89: {
 90:   u[0] = x[1] > 0. ? -2. * x[1] : 2. * x[1];
 91:   return PETSC_SUCCESS;
 92: }

 94: static void f0_quadratic_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
 95: {
 96:   for (PetscInt d = 0; d < dim; ++d) f0[0] -= -2.0;
 97: }

 99: /* SOLUTION TRIG: \phi = sin(x) + (1/3 - y^2), q = <cos(x), -2 y>, f = sin(x) + 2 */
100: static PetscErrorCode trig_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
101: {
102:   u[0] = PetscSinReal(x[0]) + (1. / 3. - x[1] * x[1]);
103:   return PETSC_SUCCESS;
104: }

106: static PetscErrorCode trig_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
107: {
108:   u[0] = PetscCosReal(x[0]);
109:   u[1] = -2. * x[1];
110:   return PETSC_SUCCESS;
111: }

113: static PetscErrorCode trig_q_bc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
114: {
115:   u[0] = x[1] > 0. ? -2. * x[1] : 2. * x[1];
116:   return PETSC_SUCCESS;
117: }

119: static void f0_trig_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
120: {
121:   f0[0] += PetscSinReal(x[0]) + 2.;
122: }

124: /* SOLUTION TRIGX: \phi = sin(x), q = <cos(x), 0>, f = sin(x) */
125: static PetscErrorCode trigx_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
126: {
127:   u[0] = PetscSinReal(x[0]);
128:   return PETSC_SUCCESS;
129: }

131: static PetscErrorCode trigx_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
132: {
133:   u[0] = PetscCosReal(x[0]);
134:   u[1] = 0.;
135:   return PETSC_SUCCESS;
136: }

138: static PetscErrorCode trigx_q_bc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
139: {
140:   u[0] = x[1] > 0. ? -2. * x[1] : 2. * x[1];
141:   return PETSC_SUCCESS;
142: }

144: static void f0_trigx_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
145: {
146:   f0[0] += PetscSinReal(x[0]);
147: }

149: static void f0_q(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
150: {
151:   for (PetscInt d = 0; d < dim; ++d) f0[d] += u[uOff[0] + d];
152: }

154: static void f1_q(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
155: {
156:   for (PetscInt d = 0; d < dim; ++d) f1[d * dim + d] = u[uOff[1]];
157: }

159: static void f0_phi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
160: {
161:   for (PetscInt d = 0; d < dim; ++d) f0[0] += u_x[uOff_x[0] + d * dim + d];
162: }

164: static void f0_phi_backgroundCharge(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
165: {
166:   f0[0] += constants[SIGMA];
167:   for (PetscInt d = 0; d < dim; ++d) f0[0] += u_x[uOff_x[0] + d * dim + d];
168: }

170: static void g0_qq(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
171: {
172:   for (PetscInt d = 0; d < dim; ++d) g0[d * dim + d] = 1.0;
173: }

175: static void g2_qphi(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[])
176: {
177:   for (PetscInt d = 0; d < dim; ++d) g2[d * dim + d] = 1.0;
178: }

180: static void g1_phiq(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[])
181: {
182:   for (PetscInt d = 0; d < dim; ++d) g1[d * dim + d] = 1.0;
183: }

185: /* SOLUTION PARTICLES: \phi = sigma, q = <cos(x), 0>, f = sin(x) */
186: static PetscErrorCode particles_phi(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
187: {
188:   u[0] = 0.0795775;
189:   return PETSC_SUCCESS;
190: }

192: static PetscErrorCode particles_q(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
193: {
194:   u[0] = 0.;
195:   u[1] = 0.;
196:   return PETSC_SUCCESS;
197: }

199: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
200: {
201:   PetscInt sol;

203:   PetscFunctionBeginUser;
204:   options->solType     = SOL_CONST;
205:   options->particleRHS = PETSC_FALSE;
206:   options->Np          = 100;

208:   PetscOptionsBegin(comm, "", "Mixed Poisson Options", "DMPLEX");
209:   PetscCall(PetscOptionsBool("-particleRHS", "Flag to user particle RHS and background charge", "ex9.c", options->particleRHS, &options->particleRHS, NULL));
210:   sol = options->solType;
211:   PetscCall(PetscOptionsEList("-sol_type", "The MMS solution type", "ex12.c", solTypes, NUM_SOL_TYPES, solTypes[sol], &sol, NULL));
212:   options->solType = (SolType)sol;
213:   PetscOptionsEnd();
214:   PetscFunctionReturn(PETSC_SUCCESS);
215: }

217: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
218: {
219:   PetscFunctionBeginUser;
220:   PetscCall(DMCreate(comm, dm));
221:   PetscCall(DMSetType(*dm, DMPLEX));
222:   PetscCall(DMSetFromOptions(*dm));
223:   PetscCall(DMSetApplicationContext(*dm, user));
224:   PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
225:   PetscFunctionReturn(PETSC_SUCCESS);
226: }

228: static PetscErrorCode SetupPrimalProblem(DM dm, AppCtx *user)
229: {
230:   PetscDS        ds;
231:   PetscWeakForm  wf;
232:   DMLabel        label;
233:   const PetscInt id = 1;

235:   PetscFunctionBeginUser;
236:   PetscCall(DMGetDS(dm, &ds));
237:   PetscCall(PetscDSGetWeakForm(ds, &wf));
238:   PetscCall(DMGetLabel(dm, "marker", &label));
239:   PetscCall(PetscDSSetResidual(ds, 0, f0_q, f1_q));
240:   if (user->particleRHS) {
241:     PetscCall(PetscDSSetResidual(ds, 1, f0_phi_backgroundCharge, NULL));
242:   } else {
243:     PetscCall(PetscDSSetResidual(ds, 1, f0_phi, NULL));
244:   }
245:   PetscCall(PetscDSSetJacobian(ds, 0, 0, g0_qq, NULL, NULL, NULL));
246:   PetscCall(PetscDSSetJacobian(ds, 0, 1, NULL, NULL, g2_qphi, NULL));
247:   PetscCall(PetscDSSetJacobian(ds, 1, 0, NULL, g1_phiq, NULL, NULL));
248:   switch (user->solType) {
249:   case SOL_CONST:
250:     PetscCall(PetscDSSetExactSolution(ds, 0, const_q, user));
251:     PetscCall(PetscDSSetExactSolution(ds, 1, const_phi, user));
252:     break;
253:   case SOL_LINEAR:
254:     PetscCall(PetscDSSetExactSolution(ds, 0, linear_q, user));
255:     PetscCall(PetscDSSetExactSolution(ds, 1, linear_phi, user));
256:     break;
257:   case SOL_QUADRATIC:
258:     PetscCall(PetscWeakFormAddResidual(wf, NULL, 0, 1, 0, f0_quadratic_phi, NULL));
259:     PetscCall(PetscDSSetExactSolution(ds, 0, quadratic_q, user));
260:     PetscCall(PetscDSSetExactSolution(ds, 1, quadratic_phi, user));
261:     PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))quadratic_q_bc, NULL, user, NULL));
262:     break;
263:   case SOL_TRIG:
264:     PetscCall(PetscWeakFormAddResidual(wf, NULL, 0, 1, 0, f0_trig_phi, NULL));
265:     PetscCall(PetscDSSetExactSolution(ds, 0, trig_q, user));
266:     PetscCall(PetscDSSetExactSolution(ds, 1, trig_phi, user));
267:     PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))trig_q_bc, NULL, user, NULL));
268:     break;
269:   case SOL_TRIGX:
270:     PetscCall(PetscWeakFormAddResidual(wf, NULL, 0, 1, 0, f0_trigx_phi, NULL));
271:     PetscCall(PetscDSSetExactSolution(ds, 0, trigx_q, user));
272:     PetscCall(PetscDSSetExactSolution(ds, 1, trigx_phi, user));
273:     PetscCall(DMAddBoundary(dm, DM_BC_ESSENTIAL, "wall", label, 1, &id, 0, 0, NULL, (void (*)(void))trigx_q_bc, NULL, user, NULL));
274:     break;
275:   case SOL_PARTICLES:
276:     PetscCall(PetscDSSetExactSolution(ds, 0, particles_q, user));
277:     PetscCall(PetscDSSetExactSolution(ds, 1, particles_phi, user));
278:     break;
279:   default:
280:     SETERRQ(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_OUTOFRANGE, "Invalid solution type: %d", user->solType);
281:   }
282:   PetscFunctionReturn(PETSC_SUCCESS);
283: }

285: static PetscErrorCode SetupDiscretization(DM dm, PetscInt Nf, const char *names[], PetscErrorCode (*setup)(DM, AppCtx *), AppCtx *user)
286: {
287:   DM             cdm = dm;
288:   PetscFE        fe;
289:   DMPolytopeType ct;
290:   PetscInt       dim, cStart;
291:   char           prefix[PETSC_MAX_PATH_LEN];

293:   PetscFunctionBeginUser;
294:   PetscCall(DMGetDimension(dm, &dim));
295:   PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
296:   PetscCall(DMPlexGetCellType(dm, cStart, &ct));
297:   for (PetscInt f = 0; f < Nf; ++f) {
298:     PetscCall(PetscSNPrintf(prefix, PETSC_MAX_PATH_LEN, "%s_", names[f]));
299:     PetscCall(PetscFECreateByCell(PETSC_COMM_SELF, dim, 1, ct, prefix, -1, &fe));
300:     PetscCall(PetscObjectSetName((PetscObject)fe, names[f]));
301:     if (f > 0) {
302:       PetscFE fe0;

304:       PetscCall(DMGetField(dm, 0, NULL, (PetscObject *)&fe0));
305:       PetscCall(PetscFECopyQuadrature(fe0, fe));
306:     }
307:     PetscCall(DMSetField(dm, f, NULL, (PetscObject)fe));
308:     PetscCall(PetscFEDestroy(&fe));
309:   }
310:   PetscCall(DMCreateDS(dm));
311:   PetscCall((*setup)(dm, user));
312:   while (cdm) {
313:     PetscCall(DMCopyDisc(dm, cdm));
314:     PetscCall(DMGetCoarseDM(cdm, &cdm));
315:   }
316:   PetscFunctionReturn(PETSC_SUCCESS);
317: }

319: static PetscErrorCode InitializeWeights(DM sw, AppCtx *user)
320: {
321:   PetscScalar *weight;
322:   PetscInt     Np;
323:   PetscReal    weightsum = 0.0;

325:   PetscFunctionBegin;
326:   PetscCall(DMSwarmGetLocalSize(sw, &Np));
327:   PetscCall(DMSwarmGetField(sw, "w_q", NULL, NULL, (void **)&weight));
328:   PetscCall(DMSwarmSortGetAccess(sw));
329:   for (PetscInt p = 0; p < Np; ++p) {
330:     weight[p] = 1.0 / Np;
331:     weightsum += PetscRealPart(weight[p]);
332:   }
333:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Np = %" PetscInt_FMT "\n", Np));
334:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "weightsum = %1.10f\n", (double)weightsum));
335:   PetscCall(DMSwarmSortRestoreAccess(sw));
336:   PetscCall(DMSwarmRestoreField(sw, "w_q", NULL, NULL, (void **)&weight));
337:   PetscFunctionReturn(PETSC_SUCCESS);
338: }

340: static PetscErrorCode CreateSwarm(DM dm, AppCtx *user, DM *sw)
341: {
342:   PetscInt dim;

344:   PetscFunctionBeginUser;
345:   PetscCall(DMGetDimension(dm, &dim));
346:   PetscCall(DMCreate(PetscObjectComm((PetscObject)dm), sw));
347:   PetscCall(DMSetType(*sw, DMSWARM));
348:   PetscCall(DMSetDimension(*sw, dim));
349:   PetscCall(DMSwarmSetType(*sw, DMSWARM_PIC));
350:   PetscCall(DMSwarmSetCellDM(*sw, dm));
351:   PetscCall(DMSwarmRegisterPetscDatatypeField(*sw, "w_q", 1, PETSC_SCALAR));
352:   PetscCall(DMSwarmRegisterPetscDatatypeField(*sw, "species", 1, PETSC_INT));
353:   PetscCall(DMSwarmFinalizeFieldRegister(*sw));
354:   PetscCall(DMSwarmComputeLocalSizeFromOptions(*sw));
355:   PetscCall(DMSwarmInitializeCoordinates(*sw));
356:   PetscCall(InitializeWeights(*sw, user));
357:   PetscCall(DMSetFromOptions(*sw));
358:   PetscCall(DMSetApplicationContext(*sw, user));
359:   PetscCall(PetscObjectSetName((PetscObject)*sw, "Particles"));
360:   PetscCall(DMViewFromOptions(*sw, NULL, "-sw_view"));
361:   PetscFunctionReturn(PETSC_SUCCESS);
362: }

364: static PetscErrorCode SetupParameters(MPI_Comm comm, AppCtx *ctx)
365: {
366:   PetscBag   bag;
367:   Parameter *p;

369:   PetscFunctionBeginUser;
370:   /* setup PETSc parameter bag */
371:   PetscCall(PetscBagGetData(ctx->bag, (void **)&p));
372:   PetscCall(PetscBagSetName(ctx->bag, "par", "Parameters"));
373:   bag = ctx->bag;
374:   PetscCall(PetscBagRegisterScalar(bag, &p->sigma, 1.0, "sigma", "Charge per unit area, C/m^3"));
375:   PetscCall(PetscBagSetFromOptions(bag));
376:   {
377:     PetscViewer       viewer;
378:     PetscViewerFormat format;
379:     PetscBool         flg;

381:     PetscCall(PetscOptionsCreateViewer(comm, NULL, NULL, "-param_view", &viewer, &format, &flg));
382:     if (flg) {
383:       PetscCall(PetscViewerPushFormat(viewer, format));
384:       PetscCall(PetscBagView(bag, viewer));
385:       PetscCall(PetscViewerFlush(viewer));
386:       PetscCall(PetscViewerPopFormat(viewer));
387:       PetscCall(PetscViewerDestroy(&viewer));
388:     }
389:   }
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }

393: static PetscErrorCode InitializeConstants(DM sw, AppCtx *user)
394: {
395:   DM         dm;
396:   PetscReal *weight, totalCharge, totalWeight = 0., gmin[3], gmax[3];
397:   PetscInt   Np, p, dim;

399:   PetscFunctionBegin;
400:   PetscCall(DMSwarmGetCellDM(sw, &dm));
401:   PetscCall(DMGetDimension(sw, &dim));
402:   PetscCall(DMSwarmGetLocalSize(sw, &Np));
403:   PetscCall(DMGetBoundingBox(dm, gmin, gmax));
404:   PetscCall(DMSwarmGetField(sw, "w_q", NULL, NULL, (void **)&weight));
405:   for (p = 0; p < Np; ++p) totalWeight += weight[p];
406:   totalCharge = -1.0 * totalWeight;
407:   PetscCall(DMSwarmRestoreField(sw, "w_q", NULL, NULL, (void **)&weight));
408:   {
409:     Parameter *param;
410:     PetscReal  Area;

412:     PetscCall(PetscBagGetData(user->bag, (void **)&param));
413:     switch (dim) {
414:     case 1:
415:       Area = (gmax[0] - gmin[0]);
416:       break;
417:     case 2:
418:       Area = (gmax[0] - gmin[0]) * (gmax[1] - gmin[1]);
419:       break;
420:     case 3:
421:       Area = (gmax[0] - gmin[0]) * (gmax[1] - gmin[1]) * (gmax[2] - gmin[2]);
422:       break;
423:     default:
424:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Dimension %" PetscInt_FMT " not supported", dim);
425:     }
426:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "dim = %" PetscInt_FMT "\ttotalWeight = %f\ttotalCharge = %f, Total Area = %f\n", dim, (double)totalWeight, (double)totalCharge, (double)Area));
427:     param->sigma = PetscAbsReal(totalCharge / (Area));

429:     PetscCall(PetscPrintf(PETSC_COMM_SELF, "sigma: %g\n", (double)param->sigma));
430:   }
431:   /* Setup Constants */
432:   {
433:     PetscDS    ds;
434:     Parameter *param;
435:     PetscCall(PetscBagGetData(user->bag, (void **)&param));
436:     PetscScalar constants[NUM_CONSTANTS];
437:     constants[SIGMA] = param->sigma;
438:     PetscCall(DMGetDS(dm, &ds));
439:     PetscCall(PetscDSSetConstants(ds, NUM_CONSTANTS, constants));
440:   }
441:   PetscFunctionReturn(PETSC_SUCCESS);
442: }

444: int main(int argc, char **argv)
445: {
446:   DM          dm, sw;
447:   SNES        snes;
448:   Vec         u;
449:   AppCtx      user;
450:   const char *names[] = {"q", "phi"};

452:   PetscFunctionBeginUser;
453:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
454:   PetscCall(ProcessOptions(PETSC_COMM_WORLD, &user));
455:   PetscCall(CreateMesh(PETSC_COMM_WORLD, &user, &dm));
456:   PetscCall(SNESCreate(PETSC_COMM_WORLD, &snes));
457:   PetscCall(SNESSetDM(snes, dm));
458:   PetscCall(SetupDiscretization(dm, 2, names, SetupPrimalProblem, &user));
459:   if (user.particleRHS) {
460:     PetscCall(PetscBagCreate(PETSC_COMM_SELF, sizeof(Parameter), &user.bag));
461:     PetscCall(CreateSwarm(dm, &user, &sw));
462:     PetscCall(SetupParameters(PETSC_COMM_WORLD, &user));
463:     PetscCall(InitializeConstants(sw, &user));
464:   }
465:   PetscCall(DMCreateGlobalVector(dm, &u));
466:   PetscCall(PetscObjectSetName((PetscObject)u, "solution"));
467:   PetscCall(SNESSetFromOptions(snes));
468:   PetscCall(DMPlexSetSNESLocalFEM(dm, PETSC_FALSE, &user));
469:   PetscCall(DMSNESCheckFromOptions(snes, u));
470:   if (user.particleRHS) {
471:     DM       potential_dm;
472:     IS       potential_IS;
473:     Mat      M_p;
474:     Vec      rho, f, temp_rho;
475:     PetscInt fields = 1;

477:     PetscCall(DMGetGlobalVector(dm, &rho));
478:     PetscCall(PetscObjectSetName((PetscObject)rho, "rho"));
479:     PetscCall(DMCreateSubDM(dm, 1, &fields, &potential_IS, &potential_dm));
480:     PetscCall(DMCreateMassMatrix(sw, potential_dm, &M_p));
481:     PetscCall(MatViewFromOptions(M_p, NULL, "-mp_view"));
482:     PetscCall(DMGetGlobalVector(potential_dm, &temp_rho));
483:     PetscCall(DMSwarmCreateGlobalVectorFromField(sw, "w_q", &f));
484:     PetscCall(PetscObjectSetName((PetscObject)f, "particle weight"));
485:     PetscCall(VecViewFromOptions(f, NULL, "-weights_view"));
486:     PetscCall(MatMultTranspose(M_p, f, temp_rho));
487:     PetscCall(DMSwarmDestroyGlobalVectorFromField(sw, "w_q", &f));
488:     PetscCall(MatDestroy(&M_p));
489:     PetscCall(PetscObjectSetName((PetscObject)rho, "rho"));
490:     PetscCall(VecViewFromOptions(rho, NULL, "-poisson_rho_view"));
491:     PetscCall(VecISCopy(rho, potential_IS, SCATTER_FORWARD, temp_rho));
492:     PetscCall(VecViewFromOptions(temp_rho, NULL, "-rho_view"));
493:     PetscCall(DMRestoreGlobalVector(potential_dm, &temp_rho));
494:     PetscCall(DMDestroy(&potential_dm));
495:     PetscCall(ISDestroy(&potential_IS));

497:     PetscCall(SNESSolve(snes, rho, u));
498:     PetscCall(DMRestoreGlobalVector(dm, &rho));
499:   } else {
500:     PetscCall(SNESSolve(snes, NULL, u));
501:   }
502:   PetscCall(VecDestroy(&u));
503:   PetscCall(SNESDestroy(&snes));
504:   PetscCall(DMDestroy(&dm));
505:   if (user.particleRHS) {
506:     PetscCall(DMDestroy(&sw));
507:     PetscCall(PetscBagDestroy(&user.bag));
508:   }
509:   PetscCall(PetscFinalize());
510:   return PETSC_SUCCESS;
511: }

513: /*TEST

515:   # RT1-P0 on quads
516:   testset:
517:     args: -dm_plex_simplex 0 -dm_plex_box_bd periodic,none -dm_plex_box_faces 3,1 \
518:           -dm_plex_box_lower 0,-1 -dm_plex_box_upper 6.283185307179586,1\
519:           -phi_petscspace_degree 0 \
520:           -phi_petscdualspace_lagrange_use_moments \
521:           -phi_petscdualspace_lagrange_moment_order 2 \
522:           -q_petscfe_default_quadrature_order 1 \
523:           -q_petscspace_type sum \
524:           -q_petscspace_variables 2 \
525:           -q_petscspace_components 2 \
526:           -q_petscspace_sum_spaces 2 \
527:           -q_petscspace_sum_concatenate true \
528:           -q_sumcomp_0_petscspace_variables 2 \
529:           -q_sumcomp_0_petscspace_type tensor \
530:           -q_sumcomp_0_petscspace_tensor_spaces 2 \
531:           -q_sumcomp_0_petscspace_tensor_uniform false \
532:           -q_sumcomp_0_tensorcomp_0_petscspace_degree 1 \
533:           -q_sumcomp_0_tensorcomp_1_petscspace_degree 0 \
534:           -q_sumcomp_1_petscspace_variables 2 \
535:           -q_sumcomp_1_petscspace_type tensor \
536:           -q_sumcomp_1_petscspace_tensor_spaces 2 \
537:           -q_sumcomp_1_petscspace_tensor_uniform false \
538:           -q_sumcomp_1_tensorcomp_0_petscspace_degree 0 \
539:           -q_sumcomp_1_tensorcomp_1_petscspace_degree 1 \
540:           -q_petscdualspace_form_degree -1 \
541:           -q_petscdualspace_order 1 \
542:           -q_petscdualspace_lagrange_trimmed true \
543:           -ksp_error_if_not_converged \
544:           -pc_type fieldsplit -pc_fieldsplit_type schur \
545:           -pc_fieldsplit_schur_fact_type full -pc_fieldsplit_schur_precondition full

547:     # The Jacobian test is meaningless here
548:     test:
549:           suffix: quad_hdiv_0
550:           args: -dmsnes_check
551:           filter: sed -e "s/Taylor approximation converging at order.*''//"

553:     # The Jacobian test is meaningless here
554:     test:
555:           suffix: quad_hdiv_1
556:           args: -sol_type linear -dmsnes_check
557:           filter: sed -e "s/Taylor approximation converging at order.*''//"

559:     test:
560:           suffix: quad_hdiv_2
561:           args: -sol_type quadratic -dmsnes_check \
562:                 -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd

564:     test:
565:           suffix: quad_hdiv_3
566:           args: -sol_type trig \
567:                 -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd

569:     test:
570:           suffix: quad_hdiv_4
571:           requires: !single
572:           args: -sol_type trigx \
573:                 -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd

575:     test:
576:           suffix: particle_hdiv_5
577:           requires: !complex double
578:           args: -dm_swarm_num_particles 100 -dm_swarm_coordinate_density constant \
579:                 -particleRHS -sol_type particles \
580:                 -fieldsplit_q_pc_type lu -fieldsplit_phi_pc_type svd

582: TEST*/